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Abstract

WebAssembly code executes within a host environment, such as
JavaScript running on Node.js. Despite the increasing popularity
of mixed JavaScript-WebAssembly applications, the interactions
between these two languages and the effect of WebAssembly us-
age on the NPM ecosystem, are currently not well understood. As
a result, developers of program analyses, runtime engines, and
ecosystem tooling are forced to make assumptions that may not
hold in practice. Moreover, there currently is no executable dataset
of WebAssembly modules that allows for studying how WebAssem-
bly is used at runtime within Node.js packages. This paper presents
the first comprehensive study of WebAssembly usage in Node.js
code. The study is enabled by a novel dataset that we collect com-
prising 510 executable Node.js packages that exercise 217 unique
WebAssembly modules. We study dependencies among packages
that use WebAssembly, how JavaScript and WebAssembly interop-
erate, and the implications for security, efficiency and reliability in
the WebAssembly-JavaScript ecosystem. The study provides several
insights and future research opportunities, including: (i) a lack of
maintenance of WebAssembly binaries that are ports of C/C++/Rust
libraries, which motivates future work on cross-language package
maintenance, (ii) a lack of testing of WebAssembly usage from
JavaScript, which motivates work on targeted testing techniques;
(iii) relatively little dynamism in WebAssembly usage, allowing
for pragmatic assumptions in program analyses; and (iv) untapped
optimization opportunities in engine caching and client-specific
debloating. Beyond these insights, we envision our dataset to pro-
vide a basis for future studies, program analyses, and work on
WebAssembly engine design.
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1 Introduction

WebAssembly (Wasm) [25] is a low-level bytecode that was intro-
duced in 2017, and was originally designed for computationally-
intensive tasks in the browser, e.g., codecs, cryptography, and games.
It is widely used in client-side applications and has also seen broad
adoption in server-side applications running on Node.js. WebAs-
sembly typically serves as a compilation target from a variety of
source languages, including C/C++, Rust, and Go [27].

A WebAssembly binary executes in a host environment, which
typically consists of JavaScript code. The interactions between a
WebAssembly binary and host code can be complex, and they are
currently not well understood. As a result, developers of program
analyses, runtime engines and tools are forced to make assump-
tions that may not hold in practice, which may result in degraded
performance and missed opportunities for optimization, as well as
unsoundness and imprecision in static analysis techniques. Addi-
tionally, the usage of WebAssembly in the NPM ecosystem has not
been studied, which can obscure security vulnerabilities, such as
buffer overflows, that may arise in WebAssembly binaries when
compiled from other languages [29].

This paper presents the first comprehensive, large-scale study of
the interactions between JavaScript host code and WebAssembly bi-
naries on the Node.js platform. We study 510 executable NPM pack-
ages that collectively exercise 217 unique WebAssembly modules,
which we provide as a dataset, named NOWASET, to the community
to facilitate further research. Currently, there exists no dataset of
executable WebAssembly modules that interoperate with host code,
and we envision this dataset to be used by developers of program
analyses, JavaScript runtimes, and security analyses, as well as
authors of ecosystem tooling.

Our study explores quantitatively how NPM packages interact
with and use WebAssembly binaries, to answer questions such as:

e How often, if at all, do packages update depended upon
WebAssembly binaries that are ports of libraries written in
C, C++, Rust, and other languages?

e Which mechanisms (e.g., synchronous, asynchronous, or
streaming) are used by packages to load and instantiate Web-
Assembly binaries?
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e How does NPM package code interact with WebAssembly
binaries by calling functions and accessing elements of Web-
Assembly binaries, such as function tables?

e How much functionality of WebAssembly binaries is tested
by packages?

Based on our analysis of the observed data, we consider the ramifi-
cations for security, efficiency and reliability in the WebAssembly-
JavaScript ecosystem, and identify a number of future research
directions that should be explored.

Security: Our study shows that WebAssembly is used perva-
sively in Node.js via complex NPM package dependencies. Due to
WebAssembly’s low-level nature and linear memory model, such
dependencies may pose security risks [29], particularly when the
dependency is indirect. We identify a small number of highly de-
pended upon NPM packages that use WebAssembly, which should
be audited carefully to ensure that they do not contain vulnerable
or malicious code. We also observe that rather than replacing pre-
existing JavaScript libraries, WebAssembly seems to have enabled
the reuse of popular systems libraries in Node.js. Packages that de-
pend on WebAssembly binaries that are ports of a systems library,
are unlikely to update their binaries to keep up with library updates
and so miss out on important security updates. The emergence of
WebAssembly has turned NPM into a multi-language ecosystem,
and package managers have still to catch up with this change.

Efficiency: Our study reveals various optimization opportuni-
ties in the JavaScript/WebAssembly ecosystem. For example, we
find that WebAssembly modules are often duplicated when an NPM
package imports other NPM packages that rely on the same Web-
Assembly module. Sharing such binaries could remove compilation
and instantiation overhead and improve caching of machine code
generated by JIT compilers. Our results also indicate that WebAs-
sembly runtimes should cache modules that are instantiated using
non-streaming methods, which appear to be favored by Node.js
developers. Finally, we also find that packages use some, but not
all functionality of a WebAssembly binary, and show that client-
specific debloating can be employed to reduce code size.

Reliability: Current static analysis techniques for WebAssembly
[1, 12, 13, 38] make unsound assumptions when accounting for
interoperation between JavaScript and WebAssembly. Our results
show that dynamism is limited in the interoperation, except in
the case of function table mutation, suggesting that pragmatic
assumptions can be made during program analysis, e.g., assuming
that JavaScript does not make calls through the function table. We
also find that only a small portion of NPM packages have tests
that comprehensively exercise the WebAssembly modules they
depend upon, which motivates further research into automated
testing techniques for multi-language interoperation. Finally, we
observe that more than 50% of WebAssembly modules in packages
are present as JavaScript Arrays or strings, which is currently not
accounted for in JavaScript program analyses.

In summary, this paper makes the following contributions.

e We present the first comprehensive study of interoperation
between JavaScript and WebAssembly, providing a quantita-
tive analysis of usage patterns.
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e We discuss the implications of our findings, providing guid-
ance for work on static analysis, optimization, security risk
assessment, and WebAssembly engine design.

o We release NOWASET, a dataset consisting of 510 NPM pack-
ages bundled with 217 WebAssembly binaries that they col-
lectively depend on, to facilitate experimentation on real-
world WebAssembly-JavaScript interoperation.

e We discuss research opportunities in the JavaScript/Web-
Assembly ecosystem, focusing on the development of pro-
gram analysis, testing and package management techniques
in multi-language systems.

The remainder of this paper is organized as follows. Section 2 pro-
vides background on WebAssembly. Section 3 covers our methodol-
ogy. The study results are presented in Section 4. Threats to validity
are discussed in Section 5. Section 6 covers related work. Finally,
Section 7 presents conclusions and future work.

2 Background

This section presents a short introduction to WebAssembly and
how it interacts with host code. For more details, please refer to the
website [15], the initial academic publication [25], and the official
language specification [39] [40].

2.1 WebAssembly Language Overview

WebAssembly was the first low-level target designed with safe,
fast, and portable semantics and an efficient representation. It was
designed for performance at par with native code, and for safety
through a sandboxed environment. WebAssembly serves as a compi-
lation target for higher-level languages like C/C++ [3, 6], Rust [11]
and Go [5] enabling the use of popular libraries on the web.

Figure 1 shows a simple WebAssembly module on the right. A
module contains a set of functions that take in a list of values as pa-
rameters and produce a list of values as results. A function consists
of a sequence of instructions, which may load values from, and store
values into, a linear memory. A module may have a function table
(W14) which is used for indirect calls. Instruction W09 indirectly
calls function bar. Each module has associated imports and exports.
Imports are constructs provided by the environment that is instan-
tiating the module, while exports define constructs that become
accessible to the environment after instantiation. Instantiation of a
module checks that the provided imports match the declared types
and initializes the module.

2.2 Interoperation with JavaScript

WebAssembly code is designed to interoperate with a host environ-
ment. JavaScript is a popular host environment, enabling the use
of WebAssembly on the web and in Node.js [9]. WebAssembly can
also be run on standalone runtimes, e.g., Wasmtime [14]. JavaScript
and WebAssembly interact, or interoperate, via global variables,
functions, function tables, and linear memory that are shared via a
module’s imports and exports. Since JavaScript is a dynamic lan-
guage, several aspects of its dynamism affect the interoperation
with WebAssembly, and in turn, analyses over WebAssembly.

2.2.1 WebAssembly Function Table. If a function table is imported
or exported, every function in the table becomes reachable from
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J01 const fs = require('fs');
Jo2 (async () => {
Jo3 let importObject = {

Jo4 "host': { 'print': arg => {
Jos console.log(arg);
Joé 1Y

Jo7 let result = await WebAssembly.compile(fs.
readFileSync ("example.wasm"));

Jos let instance = await WebAssembly.instantiate
(result, importObject);

Joo instance.exports.main();

J1o instance.exports.table.get(0)();

1 »HOo;
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W01 (module

W02 (import "host" "print"

Wo03 (func $print (param i32)))

W04 (func $main (export "main")

Wo5 i32.const 42

Wo6 call $print)

W07 (func $foo (export "foo")

Wwo8 i32.const 0

W09 call_indirect)

W10 (func $bar

w11 i32.const 23

w12 call $print)

W13 (table $table (export "table") 2 funcref)
W14 (elem $table (i32.const @) $bar $foo0))

Figure 1: JavaScript and WebAssembly code that interoperate via calls through imported and exported functions, and via the function table.
The orange (and purple) arrows show calls from JavaScript to WebAssembly (and vice versa).

JO7 LoadAttr,compile | CompileWithType,Uint8Array | DumpCompiledWasm,4df03c.wasm | CompileWithHash,4df03c

JO8 LoadAttr,instantiate | InstantiateWithType,WebAssembly.Module | InstantiateWithHash,4df03c | Import,4df03c,host,print,Function

J09 LoadInstanceAttr,4df03c,exports | CallExport,4df03c,main | CallImport,4df03c,host,print

J10 LoadInstanceAttr,4df03c,exports | CallTableExport,4df03c,0 | CallImport,4df03c,host,print

Figure 2: Dynamic log generated for JavaScript code in Figure 1.

JavaScript. JavaScript can now mutate such a table to add functions
at run time. Additionally, the offset to the initialization of a table
can itself be an imported JavaScript variable, rather than a WebAs-
sembly constant. These aspects of dynamism can have significant
repercussions for the development of analyses, such as a static call
graph analysis over WebAssembly. If the table is imported or ex-
ported, an analysis must consider that every function in the table
might be an entry point into the call graph. If the table is initial-
ized with elements starting at a variable offset, an analysis must
make worst case assumptions about this offset, which may cause
an explosion in the number of edges in the call graph emanating
from every indirect call. This introduces significant imprecision,
and applications of such a call graph analysis, e.g., dead code elimi-
nation or taint tracking, may become much less effective. One of
the questions our empirical study aims to answer is whether dy-
namic practices (e.g., function table manipulation, importing offsets
from host code) are common, which may inform static analysis
developers whether making conservative assumptions is possible.

2.2.2  Imported and Exported Functions. A static analysis for Web-
Assembly that makes a closed-world assumption and does not an-
alyze the host code the module interoperates with, is prone to
overapproximate the entry points into the module. To be sound,
the static analysis must consider every exported function (and ev-
ery function in an imported or exported function table) to be an
entry point into the module. In reality, a client of a C/C++/Rust
library compiled to WebAssembly might only use a fraction of the
exported functions. One of the goals of our study is to determine to
what extent clients of a library compiled to WebAssembly use the
entire library and if closed-world assumptions are unnecessarily
conservative.

3 Methodology
3.1 Dataset Collection

To the best of our knowledge, there is no previous dataset consist-
ing of executable WebAssembly modules that interoperate with
host code. WasmBench [27] is a popular dataset of real-world Web-
Assembly binaries that is useful for studying static properties of
WebAssembly. However, since WasmBench does not preserve host
code for binaries that have been scraped from JavaScript packages,
it cannot be used to study interoperation.

One could construct a dataset by sampling from the 3 million
packages on NPM. During initial experimentation, we began our
search process by looking at the top-100 most downloaded NPM
packages. However, we only find two packages among them that
exercise WebAssembly through their tests. Based on this obser-
vation, we conclude that WebAssembly is used sparsely in the
NPM ecosystem, and hence, we adopt a targeted keyword-based
approach instead of a random search. A similar approach is taken
in related literature: WasmBench [27] finds three wasm binaries
in the top 1,000 most depended upon NPM packages, versus 1,036
wasm binaries when looking through 2,350 packages that have the
keyword *wasm’. An NPM package can use WebAssembly either
directly in its source code or via packages that it depends upon. To
find packages that use WebAssembly directly, we search NPM for
packages that have the word “wasm” or “WebAssembly” in their
keywords (similar to WasmBench[27]). Moreover, to find packages
that use WebAssembly indirectly, we search through the depen-
dents of these packages. Our search process is illustrated in Figure 3,
which essentially is a breadth-first search through these packages
and their dependents. The following describes the process in detail.

We search through 2,008 packages scraped from NPM for viable
packages that we add to the dataset. A package p is viable if: (i)
p builds successfully, (ii) p has passing tests, and, (iii) at least one
of p’s tests executes WebAssembly. We use npm-filter [17] in our
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METRICS FOR NOWASET

p builds successfully A
has passing tests A
viable package p := p P & .

at least one test fails when

WebAssembly support is disabled

NPM packages that use WebAssembly 510
o Packages that directly instantiate WebAssembly 27
o Packages that indirectly instantiate WebAssembly 483
Statically detected WebAssembly modules 1,257
Instantiated WebAssembly modules 217

Query to NPM for packages

#Packages . P . b , Viable package
with keyword “wasm” or “WebAssembly ® Nonviable package
O  Unexamined package
2008 6 ¢ 6 6 ¢ o/l\‘\b\b\i\b\b @ Package B depends
\/\ M on package A
943 e o ¢ o

615 %N
779 %\’ /N
» /R
2385 ‘% '

Amm

/l\ﬁ

/N/l\ D N

Figure 3: Breadth-first search through package dependency tree to find viable packages for the dataset.

filtering process. If a package installs and builds successfully on
Node]JS v21.7.1, and it has successfully running tests, we check that
the package contains a .wasm binary or that the word WebAssembly
appears in any JavaScript file. If a package passes this check, we run
its passing tests on a version of node with support for WebAssembly
disabled. If this causes a previously passing test to fail, we determine
that the test exercises WebAssembly. If p passes the above checks,
we add it to the dataset and scrape GitHub for its dependents using
the ghtopdep tool [23]. We sort through the dependents of package
p by the number of stars and analyze the top-30 dependents of p,
with a minimum of 5 stars, to see if they are viable. We impose
a minimum of 5 stars to filter out template repositories that have
no tests, and only add the top-30 dependents so as to not have an
over-representation of dependents of popular packages.

As seen in Figure 3, the number of packages to be analyzed
increases with increasing depth. Examining a package takes an
average of ten minutes. Due to computational constraints, we ter-
minate the dataset collection process when 5,000 unique packages
have been examined. This results in NOWASET, a dataset consisting
of 510 packages that use WebAssembly. Note that the overall inci-
dence of WebAssembly is low even during a directed search through
the search space. Only 10% of packages are found to depend on
WebAssembly and exercise it through tests. A completely random
search would find an even lower incidence of WebAssembly, and it
would be far more computationally expensive to collect a dataset
of the same size through random sampling. Figure 3 presents sev-
eral metrics for the dataset, which we calculate using the analyses
described in Section 3.4 and 3.5. Our static results include an ad-
ditional 54 packages whose builds failed due to linter errors from
instrumentation in the dynamic analysis.

3.2 Research Questions

The main goal of our study is to determine how JavaScript devel-
opers use WebAssembly in practice. In this section, we refine this
goal into five research questions.

RQ1: How do Node.js packages depend on WebAssembly? To
study the usage of WebAssembly by clients in the dataset, we look
at how NPM packages depend on WebAssembly modules. Web-
Assembly might be present in a package’s source code or in its
dependents. Since previous work has not studied the prevalence
of WebAssembly in NPM packages, JavaScript developers and pro-
gram analysis writers might not be accounting for its presence in
their packages through dependencies. Additionally, security vulner-
abilities, e.g., buffer overflows [29] in WebAssembly modules, might
go unnoticed and affect a large number of clients, if exploited.

RQ2: How has WebAssembly usage in NPM packages evolved
over time? WebAssembly was originally introduced with the goal
of being able to perform computationally intensive tasks on the web
safely and to allow for reuse of popular C/C++/Rust libraries on the
web [25]. To study if this goal has been met, we study the evolution
of WebAssembly usage in the NPM ecosystem by looking at when
and why packages either introduce WebAssembly or switch to using
WebAssembly from JavaScript. We also study whether packages
upgrade to new versions of Wasm binaries that they depend on.

RQ3: How comprehensively do client packages in the dataset
test the WebAssembly modules they depend upon? Node.js
packages that depend on WebAssembly modules should test the in-
teraction with these modules to ensure that they work as expected,
offer the desired performance, and that any errors at the interface
between the two languages are handled properly. We use three met-
rics to measure the comprehensiveness of a package’s tests: (i) the
number of WebAssembly modules dynamically instantiated by tests,
(ii) the number of WebAssembly modules that are interoperated
with, and (iii) the variance exhibited in the interoperation.

A package can depend on several WebAssembly modules through
its dependents. Analyzing the number of WebAssembly modules
that are dynamically instantiated during test execution and compar-
ing it to the number of WebAssembly modules that can be statically
determined to exist in a package, gives us a meaningful estimate
of how well WebAssembly modules are tested. Additionally, a test
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might instantiate a module without interoperating with it, that is,
without calling any of its exported elements. Instantiating a module
does not suffice to test the module, so we also measure how often a
client to a WebAssembly module interoperates with it. We record
the variance in interoperation to assess if different clients use a
WebAssembly module in different ways or in the same way.

RQ4: How are JavaScript program analyses and engine de-
velopers affected by the presence of WebAssembly? WebAs-
sembly has seen broad adoption [27], i.e., program analyses and
engine developers have to reckon with its presence. This neces-
sitates thinking about how WebAssembly is distributed and how
interoperation between JavaScript and WebAssembly affects the
analysis of both languages.

The WebAssembly JavaScript API [16] presumes that WebAs-
sembly modules are most commonly instantiated by having web
browsers making HTTP requests for a .wasm binary file. How-
ever, WebAssembly can also be inlined in JavaScript by encoding
the raw bytes of the module as a base64-encoded string or in an
ArrayBufferl. We report on the prevalence of WebAssembly as
binary files versus inlined modules.

The WebAssembly JavaScript API provides three possible ways
to instantiate a module [7] (i) an asynchronous API that takes the
raw bytes for a WebAssembly module and an import object that
returns an instantiated module, (ii) a streaming API variant of (i),
and (iii) a synchronous method that takes in a compiled module
and returns an instantiated module. The documentation suggests
that the asynchronous streaming method is preferred and some
JavaScript engines, such as V8, only cache WebAssembly modules
instantiated using the streaming method [22]. We measure the
prevalence of these instantiation methods in practice.

Prior work [31] reports that current state-of-the-art static anal-
ysis tools [13] [1] [12] [38] over WebAssembly binaries make a
closed-world assumption about entry points into a WebAssembly
binary. They assume that one can analyze WebAssembly in isolation
without considering its interoperation with a host language. While
this is a reasonable assumption to make in the case of standalone
execution of WebAssembly, it foregoes all WebAssembly that inter-
operates with JavaScript. The same prior work also recognizes that
the dynamism of JavaScript leads to high imprecision while ana-
lyzing WebAssembly binaries. For example, JavaScript can mutate
an imported or exported function table and call functions through
this table, both of which lead to imprecision in a WebAssembly call
graph. Similar to previous work that studies the dynamism exhib-
ited by JavaScript code [36], we report on the dynamism exhibited
in JavaScript/WebAssembly interoperation to determine if analysis
developers can make pragmatic assumptions.

RQ5: What optimization opportunities exist for client pack-
ages that use WebAssembly? JavaScript packages often depend
on hundreds of other packages. In RQ1, we study how packages
depend on WebAssembly. If packages mostly depend on WebAssem-
bly indirectly and there are WebAssembly modules that are highly
depended upon, there might exist duplication of WebAssembly
modules within a package through these indirect dependencies. We

!Compilers like Emscripten have optimization flags [10] that inline WebAssembly in
JavaScript. This is done, e.g., to avoid the overhead of an additional HTTP request.
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report on the number of WebAssembly module duplicates present
in packages so that JavaScript engine developers can account for it
while caching bytes of the WebAssembly module.

All state-of-the-art static analysis tools over WebAssembly bi-
naries assume every function exported from WebAssembly to be
reachable from JavaScript. As shown by Lehmann et al. [31], this as-
sumption leads to high imprecision, and it is possible that JavaScript
clients rarely call all functions exported by a module. If modules
are commonly instantiated but never interoperated with, JavaScript
engines can opt for lazy compilation of modules. If there is large
variation in the percentage of exported functions called by clients,
client-specific debloating could help reduce code size.

3.3 Tracking the Evolution of WebAssembly in
NPM packages

To study how the usage of WebAssembly in packages has evolved
(RQ2), we manually study a randomly selected pool of 50 packages
from the dataset that use WebAssembly in their source code, rather
than in their dependencies. We restrict ourselves to a subset and do
not analyze all 510 packages in the dataset because it is very difficult
to programmatically determine the source of a WebAssembly binary,
in order to track its evolution or updates to the original library.
Often, a package developer has manually built a wasm binary from
C/Rust library code and included it in their dependencies, but does
not indicate in the source code or documentation, which library
this binary was built from.

For each package, we study its commit history and note how and
when WebAssembly usage was introduced in the application, if the
package switched to using WebAssembly from JavaScript or if the
WebAssembly binary is a port of a library in a different language
(C/C++/Rust/Go). If the WebAssembly binary is a port of a library,
we manually analyze its commit messages, documentation, Java-
Script wrapper files and wasm binaries to determine their source
library. We also track if, and how often, the binary was updated to
keep up-to-date with the original library releases as well as which
releases contain security updates. This is done to study if and how
often the depended upon WebAssembly binary is maintained.

3.4 Statically Detecting WebAssembly Modules

To determine the most depended upon NPM packages that use
WebAssembly (RQ1), study the comprehensiveness of package tests
(RQ3), and report on the prevalence of inlined WebAssembly versus
WebAssembly binary files in packages (RQ4), we run a static analy-
sis to detect WebAssembly binaries and the inlined WebAssembly
modules in an NPM package. All WebAssembly modules start with
a header containing the byte string \easm, also called the Wasm
binary magic number. A JavaScript array or string contains the raw
bytes of a WebAssembly Module if it starts with this magic number.
We parse every JavaScript file in a package’s source code and in the
source code of all its dependents to determine the prevalence of
inlined WebAssembly modules in the package. We record the hash
of the raw bytes of every inlined WebAssembly module and .wasm
file, to be able to de-duplicate the different WebAssembly modules.

For each package in the dataset, we generate a dependency tree
for its dependent packages that contain WebAssembly modules. We
analyze the path to a file that contains one or more WebAssembly
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Figure 4: Frequency distribution over the number of static and dynamic clients of dependent packages and WebAssembly modules.

modules and extract the package name as well as the dependencies
of this package. We record the package dependency tree as well as
all files in the package that contain WebAssembly modules.

3.5 Dynamically Analyzing Interoperation

To answer questions related to package tests, instantiation of Web-
Assembly modules, and JavaScript/WebAssembly interoperation
(RQ3 to RQ5), we run a dynamic analysis that injects logging code
into each JavaScript file and captures logs over test execution of
each package, as shown in Figure 2. For each dependent package of
a NOWASET package that contains WebAssembly, we instrument
the package and run tests to collect dynamic logs associated with
the package. We also collect logs associated with the package itself
by only instrumenting its source code.

The injected logging code instruments all methods that could
be used for WebAssembly module compilation and instantiation,
as well as calls to exported functions and the set and get meth-
ods of the function table. For each of these methods, we hash the
WebAssembly module contents and write the modules bytes and
hash to a file so that we can reference it later when analyzing the
logs. We associate each dynamic log with its module hash, so as to
differentiate between multiple WebAssembly modules that might
be instantiated within the same test execution. In Figure 2, we see
that a call to WebAssembly.compile (JO7) generates a log that states
that the compile method was called on a Uint8Array, to create a
module with the hash 4df@3c. JO8 generates a log that states that a
compiled module with hash 4dfe3c, is being instantiated with the
JavaScript print function. The dynamic log for J09 shows that after
the exported main function is called by JavaScript, the imported
print function is called. The dynamic log for J10 also illustrates that
a call to a function in the exported function table has been logged.

4 Empirical Results

We answer the research questions outlined in Section 3.2 by col-
lecting static data and dynamic logs over the 510 packages in the
NoWASET dataset. We refer to these packages as client packages
of the WebAssembly modules. A package may depend on several
other NPM packages, each of which might contain WebAssembly
modules.

4.1 How do Node.js packages depend on
WebAssembly?

We study how WebAssembly modules are depended upon by pack-
ages in the dataset. This helps us understand the prevalence of

WebAssembly in the dataset and if there are popular NPM pack-
ages and WebAssembly modules that a large portion of the dataset
depends upon.

4.1.1 Indirect Use of WebAssembly. 510 packages in the NOWASET
dataset depend on WebAssembly directly, through their own source
code, or indirectly, through dependent NPM packages. 27 packages
only depend on WebAssembly directly, while 313 packages only
depend on WebAssembly indirectly. We observe that some of these
packages are source code repositories for NPM packages that others
are clients of. 62.59% of NOWASET packages depend on more than
one NPM package with WebAssembly and 75.71% of them ship with
more than one WebAssembly module. This means that if a package
contains WebAssembly, it is likely to depend upon different pack-
ages that use WebAssembly, who in turn are likely to have more
than one unique WebAssembly module. This suggests that there ex-
ist complex dependencies among packages that use WebAssembly,
which poses challenges for program analysis developers.

Insight. WebAssembly is used in the Node.js ecosystem via com-
plex NPM package dependencies, which suggests the presence
of WebAssembly has to be accounted for by JavaScript program
analysis developers.

These complex dependencies suggest that there might be pack-
ages that are commonly depended upon. Prior work [29] has dis-
cussed how security vulnerabilities, e.g., buffer overflows, can show
up in WebAssembly modules from their source code languages.
These vulnerabilities could affect the clients of popular packages
that use WebAssembly. Dependencies between packages and their
security implications have been discussed in other studies [42]. We
extend this line of work to NPM packages that use WebAssembly
directly and report the most depended upon packages that use
WebAssembly.

(1) source-map is a package used to debug minified JavaScript,
on which 183 packages depend.

(2) cjs-module-lexer is a package that detects the most likely
list of named exports of a CommonJS module, on which 135
packages depend.

(3) es-module-lexer is similar to the above package. 134 pack-
ages depend on it.

(4) ewebassemblyjs/helper-wasm-bytecode is a package that con-
sists of various utility tools over WebAssembly binaries. 117
packages depend on it.
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(5) extuc/long is used to construct 64 bit two’s-complement inte-
gers and perform operations on them. 116 packages depend
on this package.

Insight. Some NPM packages and WebAssembly modules are
highly depended upon and should be audited to make sure they
do not contain malicious code and vulnerabilities.

4.2 How has WebAssembly usage in NPM
packages evolved over time?

We manually study the evolution of WebAssembly usage in the
NPM ecosystem for a randomly selected subset of 50 packages
that depend on WebAssembly directly. The introduction of Web-
Assembly in NPM packages has increased steadily over time, with
30% (15/50) packages starting to use WebAssembly in the past two
years. The WebAssembly in packages is more often than not a port
of a library in a different language like C/C++/Rust. 34% (17/50)
of packages exhibited this pattern, while 10% (5/50) of packages
switched from using a JavaScript library to using WebAssembly. Of
these packages, all cited performance improvements as a reason
for the switch. For packages that switched from using JavaScript
to using WebAssembly (e.g., source-map), we investigate clients of
these packages to track if the change had been adopted widely.
We find that switching to WebAssembly caused the API of these
packages to change to an async model. This is an invasive change,
which only 50% of clients adopted and the others choose instead to
stick with the version of the library that used JavaScript instead of
WebAssembly.

Insight. Rather than replacing pre-existing JavaScript libraries,
WebAssembly seems to have enabled the reuse of popular sys-
tems libraries on the web.

We could match up the WebAssembly depended upon by a pack-
age with a certain library for 41 packages. Of these, 66% (27/41)
packages have never updated the WebAssembly binaries to keep up
to date with library updates. Of the remaining 14 packages that up-
dated their WebAssembly binaries at least once, the WebAssembly
binary is updated an average of 5.7 times, while the corresponding
library has 15.5 releases or updates. This suggests that the package
management problem that C libraries face is bleeding into the man-
agement of WebAssembly binaries. This especially does not bode
well considering that some of the updates are important security
updates. We plot the updates to WebAssembly binaries depended
upon by packages and updates to their original libraries in Figure 5
for two packages, while also showing security updates to these
libraries. We study the library’s commit messages and release notes
to determine if a release contains a security update.

Insight. Packages that depend on WebAssembly binaries that
are ports of a C/C++/Rust library, are unlikely to update their
binaries to keep up with library updates.
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4.3 How comprehensively do packages in the
dataset test the WebAssembly modules they
depend upon?

In Section 3.2, we discuss the importance of testing WebAssembly
modules in a package. We first study how often packages dynam-
ically test the WebAssembly modules in their source code and in
their dependent packages. We also delve into how often these pack-
ages interoperate with WebAssembly modules and if they exhibit
variance in their interoperation.

4.3.1 Dynamic Clients in NoWASET. By analyzing how often a
NoWASET package dynamically exercises the packages and modules
it depends upon, we can determine how often these WebAssembly
modules are interacted with. We analyze the number of static clients
and dynamic clients, determined through client test execution, of
various NPM packages in the dataset and report their frequency
distributions in Figure 4. 70.4% of NPM packages in the dataset
that have been statically determined to have WebAssembly, have
up to three dynamic clients. Meanwhile, 83.69% of WebAssembly
modules in the dataset have up to three static clients, but 78%
of modules have only one dynamic client. The large discrepancy
between the number of static and dynamic clients of WebAssembly
modules tells us that while NOWASET package tests might exercise
their dependent NPM packages, they do not manage to exercise the
modules in these packages comprehensively.

4.3.2 Interoperation with WebAssembly modules. 217 unique Web-
Assembly modules are dynamically instantiated by package tests.
However, only 110 (50.5%) of these show interoperation with Java-
Script. We consider a module to be interoperated with if a test
calls an exported function of the module or calls a function in an
exported function table. This suggests that many WebAssembly
modules are instantiated and not interoperated with. Through man-
ual inspection of these packages, we find that these WebAssembly
modules are often C/C++ or Rust libraries that have been compiled
to WebAssembly and shipped as part of a NPM package. The NPM
package often contains some setup code that instantiates the Web-
Assembly module, but then never tests it. While it may be safe
to assume that the original library has been tested, developers of
Node.js packages should test the interaction between their Java-
Script code and the compiled WebAssembly module. For example,
such tests could check that data is correctly passed between Java-
Script and WebAssembly, that the WebAssembly module offers the
expected performance properties, and that the JavaScript code cor-
rectly handles the output, including any errors, of the WebAssembly
module. Having a comprehensive test suite for this interaction is
also important for maintaining the package in the future, as it can
help ensure that changes to the WebAssembly module do not break
the JavaScript code that depends on it.

4.3.3 Variance in Interoperation with JavaScript. 107 WebAssembly
modules are called from JavaScript via exported functions. Of these,
79 modules have one client and 28 are called from from more than
one client. 18 modules have its clients call the same set of exported
functions while 10 have different calls from clients. Among modules
whose clients call the same set of exported functions, we observe
that this is usually a setup function that is called by the clients, and
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no other exported functions are called. This suggests low coverage
of WebAssembly modules’ exported functions.

Insight. Only a small portion of packages comprehensively test
the WebAssembly modules they depend upon. Future work could
develop automated testing techniques to further test WebAssem-
bly in NPM packages.

In the remainder of the study, we draw conclusions based on
packages that exercise WebAssembly modules through tests. While
there is a need for further testing of WebAssembly in packages, we
rely on existing tests to show us how JavaScript and WebAssembly
interoperate. Since we have a large dataset, we have dynamic data
for 217 unique WebAssembly modules.

4.4 How are JavaScript program analysis and
engine developers affected by the presence
of WebAssembly?

The pervasive presence of WebAssembly has to be accounted for
in JavaScript by both program analysis developers and engine de-
velopers. To inform various design decisions for these analyses, we
study how WebAssembly is distributed, how it is instantiated, and
the dynamism exhibited by the interoperation between the two
languages.

4.4.1 Different Methods of Distributing WebAssembly. Our analysis
over different methods of distributing WebAssembly modules in
the NoWASET dataset finds that all three methods are prevalent, i.e.,
WebAssembly is found to exist as binary files, as base64-encoded
strings and in array expressions. Figure 6 visualizes the preva-
lence of various distribution methods of WebAssembly modules
in the studied packages. The figure excludes four packages from
the dataset that are outliers. Three of the four outliers have over
400 WebAssembly binary files that serve as language specification
tests. The fourth outlier is a JavaScript-polyfill for hyphenation in
HTML, which has 300 WebAssembly binary files to encode various
hyphenation patterns. Packages with more than 45 unique mod-
ules depend on an package called hash-wasm that uses hand-tuned
WebAssembly modules encoded in minified JavaScript to calculate
hashes.

We find that binaries are the most popular source of WebAssem-
bly modules in the dataset, but only by a small margin:

(1) 48% of modules are encoded as .wasm binary files.
(2) 39% of modules are inlined as base64-encoded strings.

ju
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@
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'S
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o
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(3) 13% of modules are inlined as arrays.

This would suggest that more than half of developers using Web-
Assembly use it inlined within JavaScript. Manual inspection of
packages in the dataset with inlined modules leads us to hypothesize
that developers prefer this method of distributing their WebAssem-
bly modules due to faster performance. Inlined WebAssembly does
not need to be fetched from disk.

The distribution mechanism of WebAssembly modules is impor-
tant for developers of engines and program analyses. For client-
side packages, network caching performed by the browser, that
is, caching the bytes of the WebAssembly module itself, should be
independent of the method of distributing WebAssembly. Addition-
ally, current state-of-the-art static analysis tools are built to only
analyze WebAssembly binary files and instead should integrate a
client analysis to be able to analyze inlined WebAssembly files as
well.

In addition to WebAssembly modules being instantiated by client
packages, we find 96 modules that are used internally by the Node.js
engine. For example, Node.js uses the undici package for making
performant HTTP requests, and this package in turn uses the 11http
package, which uses WebAssembly. Another example is that the
Node.js engine uses WebAssembly to detect the named exports of
a CommonJS module. We omit these packages when discussing
methods of distributing WebAssembly in NoWASET packages.

Insight. The presence of inlined WebAssembly in JavaScript files
is significant and JavaScript program analysis, engine developers
should account for it by identifying WebAssembly binaries using
the wasm binary magic number.

4.4.2 Instantiation of WebAssembly modules. A WebAssembly mod-
ule can be instantiated in three ways: synchronously via WebAssembly .
Instance; asynchronously via WebAssembly. instantiate, which re-
turns a promise that resolves once instantiation has finished; or in
a streaming manner via WebAssembly. instantiateStreaming, which
takes as input a fetch request of the module. Of these, the streaming
method is the most performant, since it can validate and compile
code while the download is still in progress.

Figure 7 shows the percent average instantiation per client for
the 510 packages in the dataset. Note that clients of a package may
or may not instantiate WebAssembly modules in the package. We
see that over half of the NPM packages in the dataset do not have
clients that dynamically instantiate the WebAssembly modules they
contain, which is to be expected considering the results discussed in
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Section 4.3. 39.5% of instantiated modules are instantiated through
the synchronous instantiation method, 60.15% are instantiated using
the asynchronous non-streaming method and less than 0.5% of
modules are instantiated using the asynchronous streaming method.
This is because streaming is only important for packages that run on
the web and fetch WebAssembly through relatively slow network
requests. Since we inspect packages where WebAssembly is loaded
from disk or via inlined bytes, there is less need for streaming,
which explains the low prevalence of calls to the streaming method.
However, front-end packages still operate on the web and should
use the streaming instantiation method. Additionally, engines like
V38 [22] only cache generated code for modules that are instantiated
through the streaming method, which means that generated code
for very few of the modules being instantiated is being cached.

Insight. Engines might consider caching WebAssembly that is
instantiated using non-streaming methods, since those are the
predominant methods used by JavaScript packages in the wild.

4.4.3  Dynamism Exhibited in Interoperation. JavaScript is a highly
dynamic language whose interoperation with WebAssembly can
also be very dynamic [31]. Generally, more dynamic behavior leads
to program analysis developers having to make assumptions about
program behavior, which negatively affects the precision or the
completeness of the analysis. We study the dynamism exhibited by
JavaScript in its interoperation with WebAssembly to see its effect
on program analysis development.

First, we look at the offset to the initialization of a WebAssembly
table, which can be a value read from JavaScript at the time of
instantiation. Of the 217 unique WebAssembly modules that are
dynamically instantiated, all contain a function table. Of these, 145
have element sections whose offsets are initialized with a static
WebAssembly constant and only two are initialized with an im-
ported variable. Both of the imported offsets are set to zero at
runtime. These results suggest that analysis developers can make
the pragmatic assumption that the offset variable is always zero.

Next, we look at how many functions are invoked by JavaScript
through a WebAssembly function table, rather than exported func-
tions. Out of 110 WebAssembly modules that export a function
table, only 10 have functions called through it. Figure 8 shows the
percentage of functions in the table that are actually called. The
percentage varies between 0% and 8.5%, with a median of 0.33%.
JavaScript could also call functions through an imported WebAs-
sembly function table, but it never does. In Figure 9, we compare

through functions vs function tables.

which an exported table is modified.

the percentage of calls made by JavaScript via exported functions
versus through an exported table and can see that only 5 modules
have more than 50% of their calls through a table.

We also look at how many packages mutate an imported or ex-
ported WebAssembly table. 16 of the 110 WebAssembly modules
with exported tables, have their table modified by JavaScript. Fig-
ure 10 shows that only two modules have more than 5% of their
entries modified. 14 modules have their table modified between
0% and 5% of its original size, with an average of 1.75%. We con-
clude that the mutation of function tables by JavaScript code is
non-negligible and should be accounted for by analysis developers.

Insight. Program Analysis developers can make the pragmatic
assumption that the dynamism exhibited between JavaScript and
WebAssembly is limited, except in the case of table mutation.

4.5 What optimization opportunities exist for
packages that use WebAssembly?

4.5.1 Duplicates within a package. Large WebAssembly binaries
are expensive to compile. Browers cache compiled WebAssembly
module data using IndexedDB [2], an API for client-side storage,
however no such alternative exists for Node.js [8]. Prior work [33]
suggests that such a shared code cache would improve load times.
We report on the number of duplicate WebAssembly modules found
in each package in the dataset, in order to quantify the potential
cost of re-compilation. An average of 26.57% and a median of 30%
of modules in a package are duplicated due to multiple dependent
packages depending on the same WebAssembly module.

Insight. WebAssembly modules are often duplicated within a
package. Node.js should employ a compiled module cache to
reduce the cost of re-compilation.

4.5.2 Exported Functions Called by JavaScript. 217 unique Web-
Assembly modules are dynamically instantiated by package tests.
However, only 50.5% of them are also interoperated with through
JavaScript, that is, JavaScript calls an exported function or a function
through an exported table. If only small subsets of a WebAssem-
bly module are actually executed, compiling it on first execution
would be beneficial. Some engines, e.g., V8, employ such a lazy
compilation strategy, which should be extended to other engines
as well.
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For the 110 unique WebAssembly modules that are interoperated
with, Figure 12 reports on the average percentage of exported func-
tions dynamically called. We see that 43% of modules have between
5% and 60% of their exported functions called. A WebAssembly
module in the dataset has a mean of 61.4% and median of 60.8% of
its exported functions called by a client. This data suggests that
clients of a package are only making use of a portion of the WebAs-
sembly exported functions. To observe the correlation between the
number of exported functions in a WebAssembly module and the
percentage of exports called by a client, we show a scatter plot of the
two values in Figure 11. For better readability, the figure excludes
WebAssembly modules with more than 200 exported functions,
which accounts for 9% of all WebAssembly modules. We observe
that, as the number of exported functions increases, the percentage
of functions called by JavaScript falls. This further suggests partial
use of modules by clients.

In order to study the potential of client-specific debloating for
WebAssembly binaries, we run a state of the art dead-code elim-
ination tool from the Binaryen toolchain [1], MetaDCE (version
119), on the binaries in the dataset. Previous work [31] has studied
MetaDCE and other state of the art WebAssembly static analy-
sis tools, showing that they all make unsound assumptions about
client behavior. Most of these tools do not allow for the input of
client-specific information and are rarely able to identify dead code.
However, MetaDCE allows the input of client-specific information
in the form of a reachability graph that indicates which exported
functions are really used. We generate this reachability graph from
dynamic logs that report on the exported functions that are called
during test execution. Figure 13 reports on the percentage size re-
duction of the binaries after dead-code elimination when compared
to a baseline of dead-code elimination where all exported func-
tions are made reachable from the client. We can see that including
client-specific information about the exports being called, means
that MetaDCE is able to specialize the binary to a client. MetaDCE
is not perfect - its call-graph analysis is potentially unsound when
determining the targets of an indirect call [31]. Given the potential
for reducing the size binaries we find, future work should inves-
tigate how to improve the soundness and precision of MetaDCE
and related tools, and to employ them more frequently to specialize
WebAssembly binaries to a client.

Wasm modules that interoperate with JavaScript
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Figure 11: Scatter plot of total functions vs Figure 12: Mean percentage of functions called Figure 13: Mean percentage size reduction of

binaries using MetaDCE for debloating.

Insight. A client-specific debloating strategy can specialize Web-
Assembly binaries to their clients and reduce code size of pack-
ages.

5 Threats to Validity

As for any empirical study, the conclusions drawn from our dataset
may not be generalizable to all JavaScript packages and WebAs-
sembly modules. For example, our suggestions for pragmatic as-
sumptions in program analyses are not guaranteed to hold for all
WebAssembly modules. Our methodology is designed with the
goal of creating a dataset of executable WebAssembly code, but
not meant to cover a representative sample of all JavaScript pack-
ages. This goal is reflected in our choice to target Node.js, but
not WebAssembly in the browser. We refer to work on recording
and replaying WebAssembly in the browser [19] for a complemen-
tary approach to gathering an executable dataset. Additionally, our
dataset search process biases our findings toward WebAssembly be-
ing used by developers or in programmatic and debugging contexts.
This is particularly evident in the list of packages that are highly
depended upon in our dataset (RQ1). Since the original use case
for WebAssembly is better performance and re-use of old libraries,
the high usage of WebAssembly in developer oriented packages
is unsurprising. Finally, our results are constrained by the quality
and comprehensiveness of the test suites of the repositories in the
dataset.

6 Related Work

WebAssembly. The initial version of WebAssembly [39] (often
dubbed MVP or 1.0) was standardized in 2015, with several pro-
posals having been merged into the standard since [40]. WebAs-
sembly’s interoperation with a host environment is currently being
formalized under the Wasm Component Model Proposal [4].

Other WebAssembly datasets and studies. Musch et al. [32] per-
formed the first large-scale study of WebAssembly usage on the
web, using the Alexa Top 1 million websites ranking. Similar to
our dynamic analysis, they hook the creation of all JavaScript func-
tions that compile or instantiate WebAssembly modules in a Google
Chrome crawler and visit each website. They study the extent of
usage of WebAssembly on these websites and inspect different
applications of WebAssembly. They do not inspect WebAssembly
usage in Node.js, its interoperation with JavaScript, and do not pro-
vide an executable dataset from their data collection. WasmBench
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[27] is a dataset of 8,461 real-world WebAssembly binaries from
GitHub, package managers and the web. WasmBench is not an exe-
cutable dataset and so can only be used to study static properties
of real-world binaries. [27] also study how WebAssembly is com-
piled to, vulnerabilities in WebAssembly originating from different
source languages and different use cases of WebAssembly. Wasm-
R3 [19] is a record-replay approach to gathering WebAssembly in
the browser to produce a standalone WebAssembly benchmark.
JABBERWOCK [28] is a tool for WebAssembly dataset generation
that works by transforming JavaScript in existing websites to Web-
Assembly code, which is then used to detect malicious websites
using Machine Learning. Lehmann et al. [31] study the problem of
static call-graph construction over WebAssembly binaries and pro-
vide a set of microbenchmarks to reflect the identified challenges.
They also provide a small set of real-world WebAssembly libraries
with executable tests.

Program analysis of WebAssembly. Wassail [38] is a research
static analysis toolkit for WebAssembly binaries that includes call
graph analysis, taint tracking and slicing. MetaDCE [1] is an opti-
mizer from the Binaryen tool suite that performs dead code elimina-
tion. Twiggy [12] is a code size profiler for WebAssembly binaries,
that detects dead code. Wasmati [20] is a static vulnerability scanner
for WebAssembly binaries. Wasabi [30] is a general framework for
implementing dynamic analyses over WebAssembly binaries. WAFL
[26] is a fuzzer for WebAssembly binaries. [33] studies compilation
performance and shared code caching in Node.js for WebAssembly
modules over the PolyBench/C dataset.

Studies of dynamism in other languages. Astrauskas et al. [18]
study how programmers use the Unsafe construct in the Rust pro-
gramming language by querying a large database of publicly avail-
able Rust code. Yang et al. [41] statically study complex Python
features to determine the usage of dynamic features, and other
work [34] studies how developers use type annotations and type
checking and inference tools in Python. Goel et al.[24] analyze 49
million calls to a construct in the R programming language called
eval to understand why programmers use eval. Others [35] did
similar work studying how a similar construct in JavaScript is used
by programmers by collecting and analyzing dynamic traces.

Other multi-language studies. Other studies in the multi-language
setting follow a similar methodology to us and have similar aims
and outcomes, like offering pragamatic insights to tool writers. Rig-
ger et al. [37] analyze the presence of x86-64 inline Assembly in C
programs and offer practical insights like the most common x86
instructions that tool writers can support to support a majority of
C projects with inlined assembly. Such a insight is less relevant for
inlined WebAssembly —x86 has roughly 1500 instructions in its
instruction set while WebAssembly has less than 300. Chaliasos et
al. [21] analyze inlined assembly in Solidity Smart Contracts and
draw similar conclusions to us with regards to why assembly is
used in a multilanguage setting, namely, to implement functionality
that isn’t available in a host language and that program analysis
developers do not account for its presence. We do however draw
insights specific to the WebAssembly domain: that inlining is done
due to the network latency constraints in a JavaScript browser
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context where, depending on the file size, the overhead of a HTTP
request can be optimized away through inlining.

7 Conclusions and Future Work

We have presented the first comprehensive study of WebAssembly
usage in Node.js packages. In this study, we investigate how often
NPM packages update WebAssembly binaries they depend upon,
mechanisms used by NPM packages to load and instantiate WebAs-
sembly binaries, how JavaScript code interacts with WebAssembly
by calling functions and accessing function tables, and how much
functionality of WebAssembly binaries is tested. A large part of our
study is enabled by the construction of NOWASET, a novel dataset of
510 executable NPM packages that collectively exercise 217 unique
WebAssembly modules, which we make available to the community
to facilitate further research.

The study provides several insights. This includes the existence
of a small number of highly depended upon NPM packages that rely
on WebAssembly modules, which should be carefully audited to
ensure they contain neither malicious nor vulnerable code. We also
observed a lack of testing of WebAssembly usage from JavaScript,
which motivates work on targeted testing techniques. We found
relatively little dynamism in WebAssembly usage, enabling for
pragmatic assumptions to be made in program analyses. Moreover,
the study identified several untapped optimization opportunities,
such as the presence of duplicate WebAssembly modules and situa-
tions where a NPM packages uses only a subset of a WebAssembly
module’s function, which suggests that client-specific debloating
techniques may be useful.

As future work, we plan to develop static analysis techniques
that are capable of precisely analyzing packages that rely on WebAs-
sembly binaries, by leveraging the insights gained from conducting
the study presented in this paper.

8 Data-Availability Statement

The NoWASET dataset, the scripts used in dataset collection, the pro-
gram analyses used in the study, as well as detailed logs from every
test and scripts to interpret these logs into the results and graphs
in the paper are all available at https://github.com/michelledaviest/
NodeWasmStudy.
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