
That’s a Tough Call!
Studying the Challenges of Call Graph
Construction for WebAssembly

Daniel Lehmann+, Michelle Thalakottur*, Frank Tip*, Michael Pradel+

1

+*

 WebAssembly

2

Fast
Compact
Portable

 WebAssembly

3

 WebAssembly

4

 WebAssembly

5

wasmtime

 Call Graph Analysis is Important!

● Core of many inter-procedural static analyses!

○ Detect unused code that can be removed from a binary (debloating)

○ Reverse engineering binaries

○ Optimizations

6

 This Work: Call Graphs in Wasm

☐ Identify 12 challenges for sound and precise static analysis

☐ Prevalence study of these challenges over the WasmBench dataset
(8461 binaries)

☐ Evaluation of 4 real world static analysis tools

☐ 24 microbenchmarks

☐ 10 real WebAssembly libraries

 Challenges Overview

Indirect Calls:

Table Indirection

Table Index Value

Table Initial State

Table Mutation

Program Representation:

Function Indices

Program Structure

Host Environment:

Host Callbacks

Entry Points

Memory:

Memory Management

Memory Mutable

Types: Low Level Types

Source Languages: Multi PL

 Challenges Overview

Indirect Calls:

Table Indirection

Table Index Value

Table Initial State

Table Mutation

Program Representation:

Function Indices

Program Structure

Host Environment:

Host Callbacks

Entry Points

Memory:

Memory Management

Memory Mutable

Types: Low Level Types

Source Languages: Multi PL

 Challenge: Indirect Calls

(func (;0;)
 ...
 i32.const 3
 call_indirect (type 0)
 ...)

(func (;9;) ...)

(elem (;0;)
 (i32.const 1)
 func 7 8 9)

10

dataflow

table
access

indirect
call

 Challenge: Indirect Calls

(func (;0;)
 local.get 0
 i32.load
 call_indirect (type 0)
 ...)

(func (;9;) ...)

(elem (;0;)
 (i32.const 1)
 func 7 8 9)

11

 Challenge: Indirect Calls

(func (;0;)
 local.get 0
 i32.load
 call_indirect (type 0)
 ...)

(func (;9;) ...)

(elem (;0;)
 (global.get 0)
 func 7 8 9)

12

 Challenge: Indirect Calls

(func (;0;)
 local.get 0
 i32.load
 call_indirect (type 0)
 ...)

(func (;9;) ...)

(elem (;0;)
 (global.get 0)
 func 7 8 9)

var x = 10

13

dataflow

 Challenge: Indirect Calls

(func (;0;)
 local.get 0
 i32.load
 call_indirect (type 0)
 ...)

(func (;9;) ...)

(elem (;0;)
 (global.get 0)
 func 7 8 9)10

WebAssembly
 .table
 .set()

14

table
mutation

 Challenge: Indirect Calls

(func (;0;)
 local.get 0
 i32.load
 call_indirect (type 0)
 ...)

(func (;9;) ...)

(elem (;0;)
 (global.get 0)
 func 7 8 9)10

WebAssembly
 .table
 .set()

15

49% of index instructions
involve local variables,

64% involve reading
memory.

22% of Wasm tables are
imported or exported.

12% of Wasm binaries have
an imported variable
as the table offset.

 Challenge: Host Environment

baz() {
 WebAssembly
 .exports
 .foo()
 }

(import “JS” ”baz”
 (func (;0;))

(export “foo”
 (func 2))
(export “bar”
 (func 3))

16

callgraph
edge

 Prevalence Study

● Prevalence study of 12 challenges over the WasmBench dataset (8461
binaries)

 This Work: Call Graphs in Wasm

✔ Identify 12 challenges for sound and precise static analysis

✔ Prevalence study of these challenges over the WasmBench dataset
(8461 binaries)

☐ Evaluation of 4 real world static analysis tools

☐ 24 microbenchmarks

☐ 10 real WebAssembly libraries

 Current Static Analysis Tools

Wassail MetaDCE Twiggy
WAVM+
LLVM SA

Static Analysis
Framework

[1]

Dead Code
Elimination tool

[2]

Static Code Size
Profiler

[3]

Wasm -> LLVM IR
Wasm VM

[4]

[1] https://github.com/acieroid/wassail
[2] https://github.com/WebAssembly/binaryen/blob/main
 /src/tools/wasm-metadce.cpp

[3] https://github.com/rustwasm/twiggy
[4] https://wavm.github.io/

19

https://github.com/WebAssembly/binaryen/blob/main

 Microbenchmarks

● 24 microbenchmarks that cover each challenge.

Microbenchmark
Soundness

Wassail WAVM+LLVM MetaDCE Twiggy

Functions in exported table are reachable ✗ ✗ ✗ ✔

Functions in imported table are reachable ✗ ✗ ✔ ✗

Table is mutated by host ✔ ✔ ✗ ✔

Table init offset is import from host 💣 ✗ 💣 ✔

20
✔ Sound ✗ Unsound ⏰Timeout

💣Crash

 Real World Benchmarks: Soundness

● 10 Wasm libraries: sql.js, opencv, graphviz, fonteditor, etc

Real World Benchmarks
Soundness

Wassail WAVM+LLVM MetaDCE Twiggy

sql.js ✔ ✗ ✔ ✔

opencv ⏰ ✗ 💣 ✗

graphviz ✗ ✗ ✔ ✔

rsa ✔ ✗ ✔ ✔

21
✔ Sound ✗ Unsound ⏰Timeout

💣Crash

 Real World Benchmarks: DCE

Real World Benchmarks
Percentage of Functions Removed

Wassail WAVM+LLVM MetaDCE Twiggy

sql.js 0% 50% 0% 0%

opencv ⏰ 92% 💣 92%

graphviz 1% 72% 0% 0%

rsa 1% 28% 0% 0%

● Most tools are overly conservative

22⏰ Timeout 💣 Crash

(Dead Code
Elimination)

 This Work: Call Graphs in Wasm

✔ Identify 12 challenges for sound and precise static analysis

✔ Prevalence study of these challenges over the WasmBench dataset
(8461 binaries)

✔ Evaluation of 4 real world static analysis tools

✔ 24 microbenchmarks

✔ 10 real WebAssembly libraries

 Conclusions

● Recommendations:

○ Tailor your analysis specifically to Wasm.

○ For precision, track data-flow and perform pointer analysis.

○ You have to analyze Wasm’s interaction with the host environment.

● We’re currently looking at how we can analyze JS applications that use
WebAssembly!

24

 Conclusions

● Recommendations:

○ Tailor your analysis specifically to Wasm.

○ For precision, track data-flow and perform pointer analysis.

○ You have to analyze Wasm’s interaction with the host environment.

● We’re currently looking at how we can analyze JS applications that use
WebAssembly!

25

https://github.com/sola-st/wasm-call-graphs/��

https://github.com/sola-st/wasm-call-graphs/

